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Abstract—Big data are usually characterized by heterogene-
ity in real-world cross-silo applications, such as healthcare,
finance, and smart cities, leaving federated learning a big
challenge. Further, many existing federated learning schemes
fail to fully consider the diverse willingness and contributions
of data providers in participation. In this paper, to address
these challenges, we are motivated to propose an incentive and
knowledge distillation based federated learning scheme for cross-
silo applications. Specifically, we first develop a new federated
learning framework, to support cooperative learning among di-
verse heterogeneous client models. Second, we devise an incentive
mechanism, which not only stimulates workers to provide more
high-quality data, but also improves clients’ enthusiasm for
participating in federated learning. Third, a novel knowledge
distillation algorithm is designed to deal with data heterogeneity.
Extensive experiments on MNIST/FEMNIST and CIFAR10/100
datasets with both IID and Non-IID settings, demonstrate the
high effectiveness of the proposed scheme, compared with state-
of-the-art studies.

Index Terms—Artificial intelligence, federated learning, knowl-
edge distillation, incentive mechanism, data privacy.

I. INTRODUCTION

The concept of federated learning was first proposed by

Google [1] and was originally aimed at solving the local

models’ updating problem for Android mobile terminal users.

Its architecture requires a global server to orchestrate all

training processes, and each client sends the parameters of the

local model to the global server for parameter aggregation.

During the entire training process, we need to protect local

data privacy and prevent some malicious attacks [2]. Under the

premise of ensuring data privacy and security, jointing models

is implemented to improve the accuracy of the AI models [3].

The efficiency of the conventional federated learning frame-

work depends on the performance of the global server. When

the number of clients is very huge, the global server is

overloaded and faces a communication bottleneck. In real

scenarios, it is unrealistic to design a powerful global server

and ensure the server’s credibility. Additionally, the goals of

federated learning are not uniform, which is a game process.

On the one hand, federated learning aims to train a global mod-

el for all clients and new participants [4]. On the other hand,

clients will sacrifice their individuality in the training process

to reach a consensus [5]. During this process, each client

has different communication capabilities, different model ar-

chitectures, and different local data distributions. We regard

these conditions as non-independent and identically distributed

(Non-IID) [6] characteristics. Compared with independent and

identically distributed (IID) data, this heterogeneity of leads

to a significant decrease in the local model’s accuracy, which

can be explained by weight divergence in the model parametric

polymerization stage [7]. Therefore, the conventional federated

averaging algorithm [1] cannot meet the needs of each client

to customize a private customized model.

In the cross-silo scenario, we train data for data islands

[8] (e.g., different institutions of the same organization or

geographically divided data centers). Moreover, during the

application of federated learning in cross-silo scenarios, de-

signing an honest and effective incentive mechanism is also a

valuable issue. The goal of the incentive mechanism is to allo-

cate the benefits (e.g., weights, training time, communication

bandwidth) generated by the global model to the participating

clients, which can encourage data owners to provide more

and higher-quality data [9]. A reasonable incentive mechanism

can strengthen the security of federated learning architecture’s

decision-making, improve the efficiency of training process,

and combat network attacks [10]. Among them, the incentive

mechanism can be reflected in the aggregation of parameters.

The result of assigning the same weight under an unbalanced

client node load is that the local model performs much better

than the global model. By measuring the client’s contribution

and payoffs, dynamically adjusting parameters is also an effec-

tive way to improve the performance of federated learning. The

main contributions of this paper are summarized as follows:

• First, we propose a new federated learning framework,

to support cooperative learning among diverse hetero-

geneous client models, achieving the goals of designing

local private customized models.

• Second, we devise an incentive mechanism, which stimu-

lates workers to contribute more high-quality private data

for local clients and improves the clients’ enthusiasm for

participation.

• Third, a novel knowledge distillation algorithm is de-

signed to deal with data heterogeneity. Extensive experi-

ments on MNIST/FEMNIST and CIFAR10/100 datasets

show the superiority of this algorithm in processing Non-

IID data and improving model accuracy.



II. RELATED WORK

In this section, we briefly review the current research

progress of federated learning, as well as its combination with

knowledge distillation and incentive mechanism.

A. Federated Learning

Conventional federated learning uses the federated aver-

aging algorithm (FedAvg) [1], which was first proposed by

McMahan et al. Li et al. [11] proved that FedAvg is also

convergent for Non-IID data. Due to the heterogeneity of

data and the inconsistent requirements of clients, the global

model is fair to meet the needs of all clients. Therefore, it

is inevitable to propose a personalized strategy to optimize

each local client. In 2020, Kevin Hsieh et al. [12] found

that the batch-based normalization method is more likely

to fail, and the group-based normalization method has less

performance degradation under Non-IID. Based on this, a

method of adjusting the communication frequency was pro-

posed, named SkewScout, which can adjust the corresponding

communication frequency according to the degree of data’s

distribution deviation. In 2022, Li et al. [13] developed a novel

federated learning framework, enabling IoT devices to build

comprehensive anomaly detection models in a collaborative

and privacy-preserving manner.

B. Incentive Mechanism in Federated Learning

The information asymmetry between model owners and

workers, may cause workers to contribute low-quality data

or misrepresent data information. As well as different model

owners, each profit-maximizing model owner will only maxi-

mize their own profits, not the profits of the alliance. In order

to solve this problem, Han Yu et al. [14] dynamically allocated

the given budget to data owners in a context-aware manner.

By experiments, they maximized collective benefits through

joint training and minimize inequality between data owners.

The application of game theory in incentive mechanisms is

a hot topic. Shuo Yang et al. [15] designed an unsupervised

learning method to quantify users, and regarded data quality

estimation and monetary incentives as a cooperative game

process. Then they used an anomaly detection mechanism

to filter abnormal data, improving the quality of the model.

In this work, we have improved the work of [16], using

incentive mechanism as the measurement threshold of the

federated learning framework. Through knowledge distillation,

we transfer knowledge between global model and clients,

meeting the revenue budget and reaching a consensus.

C. Knowledge Distillation in Federated Learning

In 2006, knowledge distillation [17] was originally designed

to extract class probabilities generated by large DNNs or

DNN sets, training smaller DNNs with marginal utility loss

in 2006. The goal is to deploy complex deep networks in

devices with low power consumption and resources while

maintaining the accuracy of the model. Then, Jihun Hamm et
al. [18] combined locally classifiers from different parties to

construct an accurate and differentiated private global classifier

without leaving the local data. There are various forms of

knowledge distillation applications. For instance, Li et al. [19]

conducted knowledge distillation in federated learning through

a shared dataset in 2019, named FedMD, training local private

customized models and keeping private data locally. Wang

et al. [20] use a combination of prompt learning, knowledge

distillation, and self-learning to train the DNN neural network.

On the basis of satisfying differential privacy, the accuracy

and compactness of the Android mobile device models are

improved.

III. THE PROPOSED SCHEME

In this section, we elaborate on the proposed scheme, first

by outlining the structure of the new federated learning frame-

work, then introducing the designed incentive mechanism and

the novel knowledge distillation algorithm.

A. The Proposed Federated Learning Framework

The proposed framework designed in this article has a

two-tier architecture, as shown in Figure 1. We assume that

all participants are selfish and long-sighted. The first layer

exists data interaction between local workers and local clients.

The local client sends data collection tasks and generates

different contract packages {Rm, qm}, where Rm represents

the payoff that the workers can obtain from the contract and

qm represents the quantity of data that the workers need to

provide in accordance with the contract. Workers select the

corresponding contract packages to create contracts based on

their own type m and upload data in exchange for rewards.

Generally speaking, the local client only has the basic

demographic information of the worker. Therefore, the client

should collect private sensitive data by constructing a data

collection protocol or contract. For example, in medical care,

hospitals can collect data such as age, weight, and blood

type during outpatient clinics. However, Internet of Things

application data of health analysis can only be collected with

the consent of the patients.

The second layer of the framework structures a federated

learning for different organizations or geographically dis-

tributed clients. Different clients may have different model

architectures and data distributions (Non-IID settings), but they

have to perform the same data classification task. Through

knowledge distillation, this data heterogeneity can be turned

into advantages. The purpose of training a global general mod-

el and designing private customized models can be achieved.

There are N clients in the process of setting up federated

learning. Through the first layer, each client has a local labeled

dataset Dk = (xk∈Nk
i , yi), which may come from the same

data distribution or different data distributions. In addition,

there is a large public dataset Dp, each client can access. After

the local collection task is over, each client independently

designs its own model fk to perform the classification task and

trains it on the local private dataset to convergence. It should

be noted that the model fk have different model architecture.

After that, each client establishes a collaborative knowledge

distillation task to improve the performance of the local
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Fig. 1. The proposed federated learning framework.

model fk, absorbing and integrating the knowledge from other

clients.

B. Incentive Mechanism

Algorithm 1 describes the devised incentive mechanism. We

focus on a specific client to illustrate the relationship between

the worker and the local client, as well as the local models

and the global model. The local client issues data collection

tasks to workers and generates contract packages {Rm, qm}.

The payoff that workers can obtain is as follows:

Payoff um

(Rm,qm) = wmRm − cqm, (1)

where wm is worker’s willingness to provide data. Theoretical

speaking, the higher the worker’s willingness, the higher the

quality of the data. c is the cost incurred per unit of data, and

qm is the unit of data. We define that workers of type m will

only choose the same type of contract (e.g., {Rm, qm}), and

will not choose other types of contracts for profit.

The willingness of workers wm to upload data determines

the quality of the data. The quality of the data influences

Algorithm 1: Incentive Mechanism

1 Initialization phase:
2 Initializes each client i ∈ N of type m, contract packages

{Rm, qm}, workers um, and the learning rate μ.

3 for i ∈ N do
4 Each client distributes contract packages {Rm, qm}

to workers um: {Rm, qm} → um;

5 Worker um chooses the contract of type m:

{Rm, qm} ← um;

6 Generates local labeled dataset Dk = (xk∈Nk
i , yi);

7 end
8 Local training phase:
9 Calculate the local payoff Payoff Local

i of the model;

10 Collaboration phase:
11 Calculate the federated marginal payoff Payoff federated

i ;

12 if Payoff
federated
i < Payoff Local

i then
13 Push unharvested clients out of the federated process:

N = N \ {i};
14 else
15 Refresh the federated cluster N ;

16 end

the time of model training convergence and the number of

iterations. The model payoff of the client i can be calculated

as follows:

Payoff federated
i = Payoff N − Payoff i �⊂N . (2)

The federated marginal payoff Payoff federated of the

model and its cost determine the value of the local payoff

Payoff Local. Each client will join the next round of federated

learning process, only if the federated payoff Payoff federated

is not less than the local payoff Payoff Local:

Payoff federated � Payoff Local. (3)

The clients with negative payoff will be pushed out of

the federated learning process and the client cluster will be

refreshed. With the iteration of the training, the federated

clients are updated to achieve cluster optimization.

C. Knowledge Distillation Algorithm

Algorithm 2 describes the designed knowledge distillation

algorithm, which consists of three phases:

• Step 1: In the initialization phase, each client issues data

collection tasks to workers and generates contract pack-

ages {Rm, qm}. The user um selects contract package of

type m, signs an agreement, and uploads data. Each client

generates a local private dataset DK = (xk∈Nk
i , yi).

• Step 2: In the local training phase, each client first

trains on the local private dataset Dk to convergence. In

order to reduce communication cost and improve training

efficiency, the server randomly selects a public subset Xp

(Xp ∈ Dp) with a size of 5000. After each client trains



on the public subset Xp to convergence, it sends the class

scores fk(x
0
i ) to the server.

• Step 3: In the collaboration phase, each client shares the

knowledge of their local model by predicting the public

subset Xp. The server first averages the class scores

f̃(x0
i ) = 1

N

∑
k fk(x

0
i ) uploaded in the local training

phase and sends it back to each client. Furthermore,

each client trains its model fk to approach the consensus

f̃(x0
i ).

In typical FedAvg algorithm, the complete dataset is the

union of each scattered data, and the loss function is the sum

of each private data point’s average: f(w) = 1
n

∑n
i=1 fi(w).

The private data (Xk, Yk) comes from different distributions

Pk(x, y) of k clients. The federated learning on each client

can start from the global model copying the weight vector

wk ∈ R
d. Then, each client performs a local update, and

optimizes the local target in several rounds of iterations

through the gradient method:

Fi(w
k) =

1

nk

∑

i∈Pk

fi(w
k),

wk ← wk − η∇Fk(w
k),

(4)

where Fk(w
k) is the loss function of the each client, nk

is the number of local samples, η is the learning rate, and

∇Fk(w
k) ∈ R

d is the gradient vector. It’s worth noting that

the expectation Epk
[Fk(w)] = f(w) may not be precise, for

Pk �= Pj in the Non-IID settings.

After a period of local update, each client transmits the local

model weight wk to the global server, and then aggregates

these weights directly: wglobal ← ∑k
k=1

nk

n wk, where wglobal

is the weight of the global model, and n is the number of

samples of all clients. Repeat the entire training process until

the global model is converged.

Being different from the previous federated training, this

paper uses the black-box model based on the output class

scores of public data samples to transfer knowledge [19].

Among them, the objective function of the server is:

f̃(x0
i ) =

1

N

N∑

k

fk(x
0
i ). (5)

Each client aims to fk ← Train(wi, x
k∈Nk
i , yi), so that the

local class scores and the output class scores downloaded by

the server reach a consensus. Additionally, the weight of each

client is worth discussing. When the local data is relatively

uniform and the local model of each client is close to the

global model, we can use the conventional FedAvg algorithm.

On the contrary, when the data distribution is diverse, the

FedAvg algorithm is not enough to meet the heterogeneity

between clients. We use cosine similarity to measure the

weight of each client in the federated learning structure:

f̃(x0
i ) =

N∑

k

Normal(cos(wk, w̄))fk(x
0
i ), (6)

Algorithm 2: Knowledge Distillation Algorithm

1 Local training phase:
2 Each client trains fk to convergence on its private Dk:

3 fk ← Train(wi, x
k∈Nk
i , yi);

4 Server randomly samples a public subset Xp ∈ Dp;

5 Each client trains fk to convergence on the public subset

Xp, and send the class scores fk(x
0
i ) to server:

6 Train(wi, Xp) → fk(x
0
i ) ⇒ server;

7 Collaboration phase:
8 f̃(x0

i ) =
∑N

k Normal(cos(wk, w̄))fk(x
0
i );

9 for t ∈ [R] communication rounds do
10 Server randomly samples a public subset

Xp[t+ 1] ∈ Dp;

11 for i ∈ N clients do
12 Each client downloads f̃(x0

i ) to its local;

13 Digest: Each clint wi ← Train(wi, Xp[t+ 1]) to

approach the consensus f̃(x0
i );

14 Revisit: wi ← Train(wi, x
k∈Nk
i , yi) for a few

epochs;
15 end
16 end

where Normal() is a normalization function. cos(wk, w̄) is

cosine similarity, measuring the similarity between the client

data quality and the global average data quality. wm is the

worker’s willingness to provide data and w̄ means aggregate

data quality. The willingness of workers wm to upload data

determines the quality of the data, affecting the time of model

training convergence and the number of iterations.

IV. PERFORMANCE EVALUATION

In this section, we perform experimental analysis on three

schemes (the proposed, FedAvg, and FedMD), evaluating the

accuracy and incentive effectiveness of the model proposed in

this paper when dealing with Non-IID data.

A. Datasets Description and Partitioning

We use two different datasets, named MNIST/FEMNIST

and CIFAR10/100, to test the proposed scheme. For M-

NIST/FEMNIST datasets, the public dataset is MNIST, and

the local private dataset is a subset of the FEMNIST. To satisfy

the IID setting, the local private dataset is randomly sampled

from FEMNIST. To satisfy the Non-IID setting, each client

has only one type style of letters by a single writer, but their

task is to identify all letters from different writers.

For CIFAR10/100 datasets, the public dataset is CIFAR10,

and the local private dataset is a subset of CIFAR100, includ-

ing 100 subclasses divided into 20 superclasses. Each image

has a "fine" label (the class it belongs to) and a "coarse" label

(the super class it belongs to). In the IID setting, each client

needs to classify the test image into the correct subclasses. In

the Non-IID setting, each client only has the image from one

subclass per superclass, but their task is to classify each image

into the correct superclasses.



TABLE I
SIMULATION EXPERIMENTS COMPARISON TABLE (Accuracy).

Settings

The proposed FedAvg FedMD

MNIST CIFAR MNIST CIFAR MNIST CIFAR

IID Non-IID IID Non-IID IID Non-IID IID Non-IID IID Non-IID IID Non-IID

Client 0 0.902 0.897 0.832 0.622 0.812 0.772 0.770 0.543 0.895 0.858 0.835 0.478

Client 1 0.876 0.900 0.780 0.568 0.805 0.771 0.803 0.550 0.886 0.825 0.823 0.583

Client 2 0.814 0.810 0.791 0.504 0.800 0.725 0.780 0.506 0.875 0.867 0.778 0.581

Client 3 0.830 0.826 0.856 0.620 0.816 0.675 0.776 0.567 0.889 0.858 0.818 0.573

Client 4 0.908 0.873 0.828 0.507 0.810 0.781 0.783 0.534 0.885 0.870 0.823 0.584

Client 5 0.875 0.890 0.813 0.653 0.820 0.807 0.793 0.562 0.899 0.901 0.842 0.574

Client 6 0.854 0.851 0.833 0.669 0.823 0.785 0.778 0.544 0.903 0.896 0.845 0.591

Client 7 0.900 0.892 0.794 0.651 0.825 0.727 0.776 0.535 0.903 0.899 0.843 0.568

Client 8 0.917 0.901 0.842 0.643 0.811 0.773 0.751 0.552 0.902 0.900 0.847 0.586

Client 9 0.877 0.883 0.837 0.640 0.795 0.792 0.826 0.546 0.901 0.894 0.807 0.535

B. Baselines Studies

We assume that there are N = 10 clients participating in

the federated learning process, and the model architecture of

each client is two or three-layer deep neural networks. Then,

we have compared the following two schemes to show the

effectiveness of the proposed scheme.

1) FedAvg [11]: This process defaults that the model

quality of all clients is equal, as global aggregation is

performed under the condition of equal weight.

2) FedMD [19]: Before the collaboration phase, each par-

ticipant first trains to convergence on the public dataset.

Then they conduct local private data training to reach a

consensus with public class scores.

In the incentive and knowledge distillation based federated

learning scheme, this process is based on the dynamic ad-

justment of parameters’ weight proposed in this paper. We

intentionally reduce the values of the 1th and 2th clients’

willingness wm and increase 0th and 5th clients’.

C. Performance Evaluation on Model Accuracy

Figure 2 shows the test accuracy after 10 clients participat-

ing in collaborative training as assumed above. We set R = 20
and mark a point every two rounds, as Table I. Obviously, all

clients can converge to a good performance within 20 rounds,

which greatly reduces the communication cost. Compared

with the Non-IID setting, the IID setting is more gradual

and has faster convergence, due to the complexity of the

task. The accuracy of the MNIST/FEMNIST is higher than

CIFAR10/100, due to the complexity of the datasets. The

accuracy of the model is affected by the willingness of the

workers. For example, 1th and 2th client’s model accuracy

are slightly lower than others, and the convergence process

fluctuates greatly. The curves of 0th and 5th client models

are gentle, and the accuracy is high.
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Fig. 2. The model performance of the scheme proposed in this article under
the MNIST/FEMNIST and CIFAR10/100 datasets with IID/Non-IID settings.
(a) MNIST/FEMNIST IID Setting. (b) MNIST/FEMNIST Non-IID Setting.
(c) CIFAR10/100 Non-IID Setting. (d) CIFAR10/100 Non-IID Setting.
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TABLE II
PEARSON CORRELATION COEFFICIENT CALCULATION TABLE.

rXY

MNIST CIFAR

IID Non-IID IID Non-IID

the proposed 0.9397 0.8599 0.7792 0.6134

FedAvg 0.1720 0.4725 -0.2552 0.5882

FedMD 0.3306 0.0945 0.6457 -0.3028

Then, we make comparisons of three schemes (the pro-

posed, FedAvg and FedMD) by recording the average accu-

racy, under pre-training, IID setting and Non-IID setting. As

shown in Figure 3, we demonstrate the superiority of this work

in processing complex datasets under Non-IID setting.

D. Performance Evaluation on Incentive Effectiveness

We calculate the Pearson correlation coefficients of vari-

ous schemes in Table II, which represents the effectiveness

of incentive mechanism [16]. When the sample mean ex-

ists X̄ =
∑n

i=1 Xi

n and Ȳ =
∑n

i=1 Yi

n , the covariance is

Cov(X,Y ) =
∑n

i=1(Xi−X̄)(Yi−Ȳ )

n−1 . The Pearson correlation

coefficient of the sample can be obtained as:

rXY =
Cov(X,Y )

SXSY
, (7)

where SX is the sample standard deviation of X .

In the identical dataset and the data distribution scenario,

it can be seen that the proposed scheme has the optimal

fairness in distributing client payoffs. The reasonableness of

the weights assigned by the federated learning framework is

proportional to the Pearson correlation coefficient. This is a

quantitative method to measure the contribution of rewarding

participants. With the iteration of the federated process, the

federated cluster is updated to achieve cluster optimization.

V. CONCLUSION

In this paper, we have proposed an incentive and knowledge

distillation based federated learning for cross-silo applications.

Significantly, we have measured the payoff of the clients

by calculating the incentive relationship between the worker,

local model, and federated structure to refresh the federated

cluster. We have allowed multiple heterogeneous clients to

transfer knowledge in the way of knowledge distillation,

creating a local private customized model. Experiments on

MNIST/FEMNIST and CIFAR10/100 datasets have proved

the effectiveness of the proposed scheme in processing Non-

IID data. Moreover, through the calculation of the Pearson

correlation coefficient, we have demonstrated the effective-

ness of the global server in assigning parameters’ weight

and optimizing federated clusters. In future works, we will

focus on optimizing the incentive mechanism, speeding up the

equilibrium convergence, and using more metrics to analyze

experiments in diverse perspectives.
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