
Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

FEDER: COMMUNICATION-EFFICIENT BYZANTINE-
ROBUST FEDERATED LEARNING

Yukun Jiang, Sichuan University
jiangyukun@stu.scu.edu.cn

Xiaoyu Cao, Duke University
xiaoyu.cao@duke.edu

Hao Chen, University of California, Davis
chen@ucdavis.edu

Neil Gong, Duke University
neil.gong@duke.edu

ABSTRACT

In this work, we propose FedER, a federated learning method that is both efficient
and robust. Our key idea is to reduce the communication cost of the state-of-
the-art robust FL method via pruning the model updates. Specifically, the server
collects a small clean dataset, which is split into a training set and a validation
set. In each round of FL, the clients prune their model updates before sending
them to the server. The server also derives a server model update based on the
training set and prunes it. The server determines the pruning fraction via evaluat-
ing the model accuracy on the validation set. We further propose mutual masking
for each client, which computes the parameters in the overlapping area of pruned
client model update and server model update. The mutual mask is used to filter out
the parameters of unusual dimensions in malicious updates. We also occasionally
normalize the masked client model updates to limit the impact of attacks. Our ex-
tensive experiments show that FedER 1) significantly reduces the communication
cost for clients in adversarial settings and 2) achieves comparable or even better
robustness compared to the state-of-the-art Byzantine-robust method.

1 INTRODUCTION

First introduced by Google, federated learning (FL) has become a popular collaborative learning
paradigm that enables distributed clients to train a model without sharing their data McMahan et al.
(2017); Kairouz et al. (2019). Due to its distributed nature, FL is vulnerable to malicious clients,
which could be fake or compromised benign clients. Considering the attack goal, some attacks aim
to decrease the test accuracy of the global model that makes the model unusable (called denial-
of-service attacks) Fang et al. (2020); Cao and Zhenqiang Gong (2022), while the others force
the global model to output the attacker-chosen label when inputs are embedded with a predefined
backdoor trigger (called backdoor attacks) Xie et al. (2019a); Bagdasaryan et al. (2020).

To defend against the aforementioned attacks, Byzantine-robust FL methods Blanchard et al. (2017);
Yin et al. (2018); Xie et al. (2019b); Sattler et al. (2020); Cao et al. (2021a) use Byzantine-robust
aggregation rules to select or weight the client model updates before aggregation. There is an arms
race between poisoning attacks and Byzantine-robust defenses, and many defenses have been cap-
tured by advanced attacks Bhagoji et al. (2019); Fang et al. (2020) because the server has no root of
trust to address malicious clients. Currently, FLTrust Cao et al. (2021a) is the state-of-the-art robust
method, where the server uses a small amount of local data to enable the root of trust.

However, Byzantine-robust FL could suffer from the communication overhead and the curse of di-
mensionality. For instance, in FLTrust Cao et al. (2021a), the clients need to send the complete local
updates to the server in each round, which is unaffordable for the clients when the model is large.
To address this issue, we propose FedER, where the mutual masking and occasional normalization
are designed to restrict the area of global update and reserve magnitudes of client model updates,
respectively. We conduct extensive experiments on four real-world datasets to evaluate the perfor-
mance of our FedER. We evaluate multiple existing poisoning attacks including label flipping attack,
BadNet attack Gu et al. (2017), Krum attack Fang et al. (2020), and a novel backdoor attack called

1

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

AVGBN. Our results show that FedER could achieve Byzantine robustness against existing attacks
as state-of-the-art method Cao et al. (2021a) does, while reducing communication cost significantly.

2 THE PROPOSED FEDER

Overview of FedER: We give threat model in Appendix B. There is one server and N clients in
our FedER. The server collects a small clean dataset, which we split into a training dataset (Dt

r)
and a validation dataset (Dv

r). The server also maintains a server model Wg,s. In each round, apart
from common model training among clients, the server computes a root validation accuracy with
Dv

r and a server model update Gs with Dt
r. The root validation accuracy is numerically equal to

p, p ∈ [0,Γ], where p is the pruning fraction of current round. It means that only parameters with
top 1−p values in each model update (from the server and clients) are reserved. Besides, we set Γ as
the maximum bound of p to prevent the global model from not updating. Also, we could use a fixed
p in FedER, however, we found a fixed pruning fraction lacks generality on different datasets. When
receiving model updates Gi

c from N clients, i ∈ {1, 2, · · · , N}, the server calculates a ReLU-
clipped cosine similarity with masked Gs and Gi

c for each client, normalizes masked Gi
c with

occasional normalization, and computes global update according to weighted ReLU-clipped cosine
similarity and normalized masked client model updates. Finally, for the server and all clients, they
update their global and local models with the aforementioned global update. Next, we will elaborate
on mutual masking, ReLU-clipped cosine similarity, occasional normalization, and global model
updating in our FedER.

Mutual Masking: Model pruning has been used to improve communication efficiency and defend
against backdoor attacks in FL by discarding neurons that are of low significance or backdoored
Jiang et al. (2019); Li et al. (2020); Wu et al. (2020). Here we create a novel pruning method,
called update pruning, which prunes the parameters of updates with lower values. Based on update
pruning, mutual masking is designed to further restrict the area for the global update. Specifically,
given a client model update Gi

c, by selecting positions of parameters with top p values in Gi
c, we

obtain a binary client mask mi
c. Likewise, the mask for server model update Gs, denoted as ms,

can also be acquired. For each client i, it has a unique binary mutual mask given by

mi
m = mi

c ⊙ms, (1)

where ⊙ is an element-wise product. Though element-wise addition ⊕ (here we assume 1⊕ 1 = 1)
can also be used to generate the additive mask mi

a, we found our method is less robust using this
additive masking measure (see Appendix G.2). As an important determinant of mi

m, the value of
p is dynamically changing that equals to the current global model’s accuracy on the root validation
dataset when the accuracy is not greater than Γ.

ReLU-Clipped Cosine Similarity: Cosine similarity is originally used to measure the angle be-
tween two vectors, and can also be used to represent whether a server model update and a client
model update are of similar direction. Though FLTrust Cao et al. (2021a) also employs cosine simi-
larity to address malicious client model updates, it is based on updates with full parameters, which
has a significant drawback. In particular, because there are tens of thousands of parameters in each
model update, even if there are some malicious parameters, as long as the number and values of
these parameters are within a reasonable range, the cosine similarity can still be greater than zero.
Therefore, FLTrust is robust against attacks that produce malicious client model updates obviously
deviated from the server model update (e.g., LF attack and Krum attack), while may be compromised
by attacks that produce malicious client model updates slightly deviated from the server model up-
date (e.g., BN attack and AVGBN attack). With mutual masking, we compute masked updates with
partial parameters to derive a more representative cosine similarity. For masked updates Gs ⊙mi

m
and Gi

c ⊙mi
m, the cosine similarity between them is given by

Ci
m =

〈
Gs ⊙mi

m,Gi
c ⊙mi

m

〉
∥Gs ⊙mi

m∥ · ∥Gi
c ⊙mi

m∥ , (2)

where ⟨·, ·⟩ and ∥·∥ denote the inner product of two vectors and ℓ2 norm, respectively. However,
when cosine similarity comes to be negative, no matter the client model update is benign or ma-
licious, it leads global update to be compromised. To overcome this challenge, we sacrifice client
model updates that produce negative cosine similarities with a ReLU function.

2

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Occasional Normalization: Pruning causes the reduction of communication cost in each round, as
well as the valuable information. In order to limit the impact of attacks and retain as much infor-
mation of client model updates as possible, instead of normalizing them with server model update’s
magnitude as Cao et al. (2021a), we propose an occasional normalization method, which gives them
larger magnitudes (in a reasonable range) to reserve more information. As for the intuition of oc-
casional normalization, because root training dataset only contains a few samples that are easy to
be fitted by the global model, and the server model update is regarded as the standard to compute
the global model. Once it is fitted, the magnitude of server model update will be much smaller
than that of client model updates (see Appendix C), which greatly slows down model convergence.
Since normalization lets all client model updates be of the same magnitude, the scaling attack Bag-
dasaryan et al. (2020) could be considered as nonexistent. Formally, for masked client model update
Gi

c ⊙mi
m, we normalize it as

Gi
c ⊙mi

m = n ·Gi
c ⊙mi

m,

subject to n = max (n1,n2,n3)

n1 =
∥Gs ⊙ms∥
∥Gi

c ⊙mi
m∥

n2 =

√
1− p · ∥Gavg

s ⊙ms∥
∥Gi

c ⊙mi
m∥

n3 =
s

mean (abs (Gi
c ⊙mi

m))
,

(3)

where ∥Gavg
s ⊙ms∥ is a statistical value of averaged pruned server model updates’ magnitudes for

former rounds, s is a standard mean based on our minor benign assumption, mean (·) represents
the element-wise mean, and abs (·) represents the element-wise absolute value. Specifically, in
round rg, rg ∈ {1, 2, · · · , Rg}, we have the following:

∥Gavg
s ⊙ms∥ =

rg∑
r=1

∥Gs ⊙ms∥√
1− p · rg

. (4)

It is worth noting that, though not displayed in symbols, ∥Gs ·ms∥ and p are highly related to r.
Due to p parameters in Gs ·ms are set to be zero, we divide it by

√
1− p to obtain an approximate

”full” magnitude.

As for the minor benign assumption, we assume that in our FedER, at least ϵ (a minor fac-
tor, in our experiments, it is set to be 0.05) clients are benign. Because different client
model updates have different overlapping areas with the server model update, thus here we
consider the absolute element-wise mean instead of ℓ2 norm. In particular, We define a
set M = {mean

(
abs

(
G1

c ⊙m1
m

))
, mean

(
abs

(
G2

c ⊙m2
m

))
, · · · ,mean

(
abs

(
GN

c ⊙mN
m

))
}.

Sorting M from low to high, a sorted set Ms = {mean
(
abs

(
G1,s

c ⊙m1,s
m

))
,

mean
(
abs

(
G2,s

c ⊙m2,s
m

))
, · · · ,mean

(
abs

(
GN,s

c ⊙mN,s
m

))
} can be acquired. Then we have

s = Gϵ·N,s
c . (5)

With the malicious fraction in range [0, 1−ϵ], it is guaranteed that s is not greater than the maximum
absolute element-wise mean of benign client model updates, which means n3 is a benign factor.
Meanwhile, because n1 and n2 are directly derived by server model update’s magnitude, they can
also be considered as safe factors. Therefore, we take n = max (n1,n2,n3) to normalize client
model updates and mitigate the impact of attacks (esp., scaling attack Bagdasaryan et al. (2020)),
while accelerating model convergence.

Global Model Updating: To conduct global model updating, we first need aggregate a global
update. The global update is calculated with normalized masked client model updates and weighted
ReLU-clipped cosine similarities as

Gg =

N∑
i=1

ReLU(Ci
m)∑N

j=1 ReLU(Cj
m)

·Gi
c ⊙mi

m. (6)

Then, the server transmits Gg to all clients. It is intuitive that more than p parameters are set to
be zero that at most (1 − p) parameters of global model Wg will be updated, which could greatly
reduce communication cost for the server and each client. Formally, with global update, we update
global model as Wg = Wg − α ·Gg , where α is the global learning rate.

Furthermore, we have provided description of complete workflow with pseudo code in Appendix D.

3

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

3 EVALUATION

3.1 EXPERIMENTAL SETUPS

All considered FL methods are implemented using Torch1 with float32 (32-bit) as the precision of
each model parameter. For each dimension, we use a binary value (1-bit) to indicate whether this
dimension is pruned. For other settings on datasets, evaluated attacks, evaluation metrics, and FL
system settings, we mostly follow previous work Cao et al. (2021a) (see Appendix E).

3.2 EXPERIMENTAL RESULTS

3.2.1 COMPARISON WITH STATE-OF-THE-ART STUDY

Table 1: Results on Fashion-MNIST-0.5

Attack Defense Critical Round Critical Volume
/ (MB) Percent Accuracy ASR

No
FLTrust 1020 480.20 / 100.00% 0.85

FedER w/ fixed p = 0.9 1130 69.82 / 14.54% 0.80
FedER 660 126.69 / 26.38% 0.85

LF
FLTrust 1150 541.40 / 100.00% 0.85

FedER w/ fixed p = 0.9 1110 68.59 / 12.69% 0.81
FedER 700 124.28 / 22.96% 0.85

BN
FLTrust 1080 508.44 / 100.00% 0.85 0.09

FedER w/ fixed p = 0.9 1180 72.91 / 14.34% 0.81 0.02
FedER 750 129.87 / 25.54% 0.85 0.05

AVGBN
FLTrust 830 390.75 / 100.00% 0.87 0.97

FedER w/ fixed p = 0.9 970 59.94 / 15.34% 0.83 0.03
FedER 640 124.78 / 31.93% 0.85 0.04

Krum
FLTrust 1650 776.79 / 100.00% 0.83

FedER w/ fixed p = 0.9 1280 79.09 / 10.18% 0.82
FedER 720 126.59 / 16.30% 0.85

As shown in Table 1, on Fashion-MNIST-0.5 (0.5 is the imbalance degree), compared with the state-
of-the-art method FLTrust Cao et al. (2021a), our FedER (with dynamic p as default) significantly
reduces communication cost in FL with similar accuracy and ASR on various datasets considering
existing attacks, but FedER with fixed p may result in poor accuracy. Here, we consider FLTrust
as the baseline that the percent for its critical volume is always 100%. Besides, it comes to an
interesting result that our method even shows higher robustness. When defending against the crafted
AVGBN attack, FLTrust is compromised by AVGBN with an ASR of 0.97, but FedER receives a
low ASR of 0.04, and produces around 68% less volume to reach the critical accuracy. Performance
metrics on other datasets also could demonstrate comparable results (see Appendix F).

3.2.2 ABLATION STUDY

To further evaluate the impact of maximum bound Γ for pruning fraction, masking method, occa-
sional normalization, and malicious fraction, we conduct ablation study (see Appendix G).

4 CONCLUSION

In this work, we propose a federated learning method (called FedER) that enables efficient Byzantine
robustness against poisoning attacks. The server and the clients communicate pruned model updates
instead of complete ones, which significantly reduces the communication cost for the server and
resource-constrained clients. Extensive experiments on four datasets demonstrate that, the proposed
FedER can achieve comparable or even higher Byzantine robustness while incurring much less
communication cost, compared to the state-of-the-art Byzantine-robust FL methods. Our future
work will focus on studying different kinds of similarities instead of simple cosine similarity.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for constructive reviews and comments. This work was sup-
ported by National Science Foundation under grant No. 1801751, 2112562, and 1937786.

1A Python deep learning library (https://pytorch.org/)

4

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

REFERENCES

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How
to Backdoor Federated Learning. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS).

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. 2019. Analyzing
federated learning through an adversarial lens. In Proceedings of the International Conference on
Machine Learning (ICML). PMLR, 634–643.

Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389 (2012).

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017. Machine learn-
ing with adversaries: Byzantine tolerant gradient descent. In Proceedings of the Annual Confer-
ence on Neural Information Processing Systems (NeurIPS). 118–128.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021a. FLTrust: Byzantine-
robust Federated Learning via Trust Bootstrapping. In Proceedings of the Network and Distributed
System Security Symposium (NDSS).

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021b. Provably secure federated learning
against malicious clients. In Proceedings of the AAAI Conference on Artificial Intelligence.

Xiaoyu Cao and Neil Zhenqiang Gong. 2022. MPAF: Model Poisoning Attacks to Federated Learn-
ing based on Fake Clients. In CVPR Workshops.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee,
Ian Molloy, and Biplav Srivastava. 2019. Detecting Backdoor Attacks on Deep Neural Networks
by Activation Clustering. In Proceedings of the AAAI Workshop on Artificial Intelligence Safety
(SafeAI).

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model poisoning attacks
to byzantine-robust federated learning. In Proceedings of the USENIX Security Symposium
(USENIX Security). 1605–1622.

Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis: Finding Sparse, Train-
able Neural Networks. In Proceedings of the International Conference on Learning Representa-
tions (ICLR).

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying vulnerabilities
in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017).

Song Han, Jeff Pool, John Tran, and William J Dally. 2015. Learning both Weights and Connections
for Efficient Neural Network. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778.

Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and Lean-
dros Tassiulas. 2019. Model pruning enables efficient federated learning on edge devices. arXiv
preprint arXiv:1909.12326 (2019).

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2019.
Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny
images. (2009).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

5

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li. 2020. Lotteryfl:
Personalized and communication-efficient federated learning with lottery ticket hypothesis on
non-iid datasets. arXiv preprint arXiv:2008.03371 (2020).

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning Filters
for Efficient ConvNets. (2016).

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. 2018a. Trojaning attack on neural networks. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS).

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018b. Rethinking the
Value of Network Pruning. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR).

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 1273–
1282.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. 2017. Pruning convolutional neural networks
for resource efficient inference. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR).

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
2020. Fedpaq: A communication-efficient federated learning method with periodic averaging
and quantization. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR, 2021–2031.

Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek. 2020. On the byzantine
robustness of clustered federated learning. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8861–8865.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural
Networks. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. 2018. When
Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks.
In Proceedings of the USENIX Security Symposium (USENIX Security).

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data poisoning attacks
against federated learning systems. In Proceedings of the European Symposium on Research in
Computer Security (ESORICS). Springer, 480–501.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. 2019. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In
Proceedings of the IEEE Symposium on Security and Privacy (SP). IEEE, 707–723.

Chen Wu, Xian Yang, Sencun Zhu, and Prasenjit Mitra. 2020. Mitigating backdoor attacks in feder-
ated learning. arXiv preprint arXiv:2011.01767 (2020).

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017).

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019a. Dba: Distributed backdoor attacks against
federated learning. In Proceedings of the International Conference on Learning Representations
(ICLR).

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019b. Zeno: Distributed stochastic gradient descent
with suspicion-based fault-tolerance. In Proceedings of the International Conference on Machine
Learning (ICML). PMLR, 6893–6901.

6

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018. Byzantine-robust dis-
tributed learning: Towards optimal statistical rates. In Proceedings of the International Confer-
ence on Machine Learning (ICML). PMLR, 5650–5659.

A BACKGROUND AND RELATED WORK

A.1 FEDERATED LEARNING

FL aims to enable collaborative model training among distributed clients with their local datasets.
Assuming there are a server and N clients, where each client i possess a local dataset Di

c. In general,
with server’s aggregation, our goal is to solve a distributed optimization problem

min
Wg∈Rd

f(Wg;Dc) = min
Wg∈Rd

N∑
i=1

f(Wg;D
i
c), (7)

where Wg represents the global model; l (·) represents the empirical loss function, e.g., cross en-
tropy loss; and Dc = ∪N

i=1D
i
c.

In non-adversarial settings, FedAVG McMahan et al. (2017) is widely recognized as a state-of-the-
art method. In each round, client i receives a global model from the server, computes a client model
update Gi

c with its local dataset Di
c and sends Gi

c to the server. The server aggregates a global
update following the aggregation rule below:

Gg =

N∑
i=1

|Di
c|

|Dc|
·Gi

c, (8)

where |D| indicates the size of dataset D. Then a new global model is obtained via applying this
update. Though FedAvg achieves good performance in non-adversarial settings, recent studies Bag-
dasaryan et al. (2020); Cao et al. (2021a) show that, the global model in FedAVG is vulnerable to
malicious clients, i.e., even a single malicious client can arbitrarily corrupt the global model.

To defend against adversaries, many Byzantine-robust methods are proposed. These methods essen-
tially follow the same training process as FedAvg, while altering only the aggregation rules. Next,
we will discuss some popular aggregation methods and their aggregation rules:

Krum Blanchard et al. (2017): Krum selects an update that has the minimum squared Euclidean
distance to (N − l − 2) other updates from all client model updates, where l is the upper limit of
the number of malicious clients.

Trim-mean Yin et al. (2018): Trim-mean considers each dimension of global update individually
to conduct a coordinate-wise aggregation. Specifically, for each dimension of client model updates,
the server sorts parameters of this dimension from different clients, trims the parameters with larger
k and smaller k values, and computes the mean of remaining 1−2k parameters as the global update
parameter, where k ∈ [0, 0.5). To achieve effective defense, k should be larger than the malicious
fraction, which means Trim-mean can only be robust when more than half of clients are benign.

Median Yin et al. (2018): Median also considers each dimension of global update individually, but
it does not trim any parameters. For parameters of each dimension, after sorting, Median chooses
the median parameter as the global update parameter of this dimension.

FLTrust Cao et al. (2021a): FLTrust is the state-of-the-art Byzantine-robust FL method. In
FLTrust, the server bootstraps trust to the clients. Specifically, the server collects a small clean
dataset D0

c and computes a server model update G0 based on the dataset in each round of FL. The
global update is aggregated as follows:

Gg =

N∑
i=1

ReLU(Ci)∑n
j=1 ReLU(Cj)

· ∥G
0∥

∥Gi
c∥

·Gi
c, (9)

where Ci is the cosine similarity between G0 and Gi
c.

Another type of defenses Cao et al. (2021b) aims to provide provable security, which is orthogonal
to this work.

7

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

A.2 POISONING ATTACKS TO FEDERATED LEARNING

Like centralized learning, FL is vulnerable to data poisoning attacks Biggio et al. (2012); Liu et al.
(2018a); Shafahi et al. (2018); Suciu et al. (2018); Tolpegin et al. (2020), where the attacker pollutes
the training data such that the global model is corrupted. Moreover, due to the unique distributed
training process, FL is also vulnerable to model poisoning attacks Fang et al. (2020); Bhagoji et al.
(2019); Xie et al. (2019a); Bagdasaryan et al. (2020), in which an attacker directly manipulates the
model updates sent from the malicious clients to the server. Based on the attack goal, poisoning
attacks can be divided into two categories, i.e., denial-of-service (DoS) attacks Fang et al. (2020)
and backdoor attacks Bagdasaryan et al. (2020); Xie et al. (2019a). DoS attacks aim to decrease
the global model accuracy to make the model unusable, while backdoor attacks attempt to force the
global model to output the attacker-chosen label for inputs with pre-defined trigger(s). Next, we will
give more information about two DoS attacks, i.e., label flipping attack and Krum attack Fang et al.
(2020), as well as two backdoor attacks, i.e., BadNet attack Gu et al. (2017) and averaging BadNet
attack.

Label flipping (LF) attack: LF is a popular attacking method that changes data samples’ labels to
attacker-chosen targets. This attack is achieved by manipulating training datasets distributed among
compromised clients, which is considered as a data poisoning attack. If LF attack is successful, the
global model will make incorrect predictions, which leads to the low accuracy of the model.

BadNet (BN) attack Gu et al. (2017): First introduced in centralized learning, BN attack does not
intend to affect global model accuracy with the clean testing dataset, but accuracy with the poisoned
testing dataset. Specifically, corrupted clients train their local models with poisoned datasets, which
contain some data samples with trigger(s) belonging to the attacker-chosen category. When BN
attack is successful, if inputting samples with trigger(s), the global model will output the attacker-
chosen prediction. While for input samples without triggers, the predictions made by the global
model will not be affected. In FL, by sending malicious client model updates to the server, the
global model can also be backdoored. To achieve a more effective BN attack to FL, Bagdasaryan
et al. Bagdasaryan et al. (2020) proposed a scaling method, which scales malicious client model
updates with a factor much greater than 1. However, this scaling method is useless when the server
takes a magnitude normalization to all client model updates. Therefore, in this work, BN attack and
scaling BN attack are regarded as the same.

Averaging BadNet (AVGBN) attack: With magnitude normalization and weighted aggregation in
the server, the effect of BN attack is greatly mitigated. We believe that the reason for this failure
of BN attack is the lack of cooperation among malicious clients. Specifically, client model updates
sent by different malicious clients may be of diverse directions, and even the updates may affect
each other, resulting in a very low attack effect caused by each malicious client. To make malicious
client model updates orderly, empirically, we craft a cooperative BN attack by conducting a FedAVG
McMahan et al. (2017) with malicious updates and sending the averaged update to the server, named
AVGBN.

Krum attack Fang et al. (2020): Krum attack is a model poisoning attack to Krum Blanchard et al.
(2017), but can also somehow threaten other Byzantine-robust FL Cao et al. (2021a). Because Krum
chooses a client model update that is closest to other updates, once the chosen update is malicious,
Krum becomes vulnerable. To make the chosen update malicious, the attacker should be able to
access and manipulate client local model updates. Specifically, assuming that the direction mask
for the global update is mnon in a non-adversarial scenario, Krum attack replaces the client model
updates of compromised clients with a constructed update −µ ·mnon, where µ is a binary-searched
value to make −µ ·mnon be chosen by Krum. This attack could deviate the global update the most
towards the reverse direction of global update chosen in a non-adversarial scenario, thus making
the direction between current global model Wg and the optimal global model Ŵg further, finally
leading to low global model accuracy.

A.3 MODEL PRUNING & UPDATE PRUNING

To overcome over-parameterization, model pruning is widely recognized as a remedy Han et al.
(2015); Molchanov et al. (2017); Li et al. (2016); Frankle and Carbin (2019). In a typical model
pruning pipeline, training, pruning, and fine-tuning are regarded as the basic three stages to prune

8

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

redundant parameters and keep important parameters Liu et al. (2018b). Due to FL clients’ resource-
constrained nature, recent years have witnessed increasing interest in employing model pruning for
efficient FL Jiang et al. (2019); Li et al. (2020). Specifically, Jiang et al. Jiang et al. (2019) proposed
an adaptive method that prunes model to maximize the approximate empirical risk reduction, Li et al.
Li et al. (2020) leveraged the lottery ticket hypothesis Frankle and Carbin (2019) that conditionally
prunes model to find lottery ticket networks (LTNs). Besides, Reisizadeh et al. Reisizadeh et al.
(2020) demonstrated another perspective to reduce the communication cost involved in FL, which
employed periodic averaging and quantization techniques. Moreover, because the backdoored neural
network could produce activations of weird values with adversarial inputs Chen et al. (2019); Wang
et al. (2019), interestingly, Wu et al. Wu et al. (2020) proposed a defense against backdoor attacks
that prunes model to remove backdoored neurons that produce abnormal activation values.

Motivated by model pruning, we propose a new pruning paradigm for FL, which prunes model up-
dates to reduce communication volume in each communication round, as well as the computation
cost for the server to aggregate a secure global update. Specifically, we leverage unstructured prun-
ing for model updates to get “sub-updates” that only keep parameters with higher values. Then, the
server conducts Byzantine-robust aggregation based on pruned updates. Compared with the typi-
cal model pruning, though both model pruning and update pruning could achieve communication
efficiency, our method achieves it by discarding redundant update parameters instead of finding a
“sub-network”. Compared with Wu et al. Wu et al. (2020), 1) our update pruning enables efficient
FL while Wu et al. relies on entire model parameters; 2) our method is based on update-level while
Wu et al. manipulates the global model directly; 3) the goal of our method is preventing the global
model from being backdoored while that of Wu et al. is removing backdoors from the compromised
global model.

B THREAT MODEL

B.1 ATTACK MODEL

Following previous works Fang et al. (2020); Cao et al. (2021a), we consider a scenario where an
attacker controls some malicious clients, which can be either fake clients (because communication
links are compromised) or compromised genuine clients. We assume the malicious clients can send
arbitrary client model updates to the server and collude with each other. Moreover, we notice that
existing attacks may have different assumptions on the attacker’s knowledge Fang et al. (2020).
In particular, an attacker may have full knowledge (including all clients’ local training data and
model updates), or partial knowledge about the FL training process. Full-knowledge attacks are
shown to be stronger than partial-knowledge ones. Therefore, following FLTrust Cao et al. (2021a),
we consider the full-knowledge attacks to show that our FedER is robust even against the strong
attacks.

B.2 DEFENSE MODEL

Defender’s Goal: Following the previous work Cao et al. (2021a), we assume the defender’s goal is
to achieve robustness against poisoning attacks in adversarial settings, while remaining accurate in
non-adversarial settings. Moreover, since the clients are usually resource-constrained devices, e.g.,
IoT devices and smartphones, we further assume the defender aims to reduce the communication
cost of FL as much as possible, especially on the client side. Existing defenses like Krum Blanchard
et al. (2017) or FLTrust Cao et al. (2021a) do not consider the efficiency of FL.

Defender’s knowledge and capability: We assume the defender is on the server side and has
access to everything the server knows, including the global model and all the masks as well as
masked updates, which the clients send to the server. However, the defender does not know which
clients are malicious or the number of malicious clients. We further assume that the server collects
a small representative dataset (i.e., the distribution of the small dataset is the same distribution as
that of overall training data among clients) following Cao et al. (2021a), which needs to be clean
from poisoning. The cost of collecting a small size of clean samples is much lower than the cost
required for an adversary to carry out an attack. This dataset can be obtained by manual labeling. We
split the server’s collected dataset into a training dataset and a validation dataset, which we use for
calculating the server model update and choosing the pruning factor, respectively. We empirically

9

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

show that the server only needs to collect a small dataset, e.g., 100 examples for training and 100
examples for validation, to achieve high accuracy and efficiency.

C THE ℓ2 NORM OF THE SERVER MODEL UPDATE AND CLIENT MODEL
UPDATES FOR EACH TRAINING ROUND

Figure 1 shows the ℓ2 norm (magnitude) of the server model update and client model updates on
four datasets without attacks. Here we use ℓ2 norm to represent the magnitude of each update. For
better comparison, we use the averaged magnitudes of client model updates. We observe that, for
both the server model update and benign client model updates, their magnitudes increase and then
decrease on all datasets except CIFAR-10. Moreover, on each dataset, the magnitude of the server
model update has always been smaller than that of client model updates.

Figure 2 shows the ℓ2 norm (magnitude) of three kinds of updates, which are respectively the server
model update, benign client model updates, and malicious client model updates, where MNIST-0.5
is used and four attacks are considered. We set the malicious fraction to be 0.3 as default. For all
attacks except LF attack, the magnitudes of updates increase and then decrease, while that of benign
client model updates and malicious client model updates are much higher than that of server model
update. For LF attack, though the server model update’s magnitude receives an increase and then a
reduction, the magnitudes of benign client model updates and malicious client model updates keep
growing.

Overall, under all settings, the magnitudes of benign client model updates are higher than the server
model update’s. Hence, we design the occasional normalization to normalize the magnitudes of
client model updates.

(a) MNIST-0.1

0 200 400 600 800 100012001400
Communication rounds

0

1

2

3

4

5

6

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates

(b) MNIST-0.5

0 200 400 600 800 100012001400
Communication rounds

0

2

4

6

8

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates

(c) Fashion-MNIST-0.5

0 200 400 600 800 100012001400
Communication rounds

0

1

2

3

4

5

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates

(d) CIFAR-10-0.5

0 200 400 600 800 100012001400
Communication rounds

0.2

0.4

0.6

0.8

1.0

1.2

1.4
(A

ve
ra

ge
d)

 m
ag

ni
tu

de

Server model update
Benign client model updates

Figure 1: ℓ2 norm of server model updates and client model updates without attack on multiple
datasets.

(a) LF attack

0 200 400 600 800 100012001400
Communication rounds

0

2

4

6

8

10

12

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates
Malicious client model updates

(b) BN attack

0 200 400 600 800 100012001400
Communication rounds

0
1
2
3
4
5
6
7
8

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates
Malicious client model updates

(c) AVGBN attack

0 200 400 600 800 100012001400
Communication rounds

0

1

2

3

4

5

6

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates
Malicious client model updates

(d) Krum attack

0 200 400 600 800 100012001400
Communication rounds

0

1

2

3

4

5

6

7

(A
ve

ra
ge

d)
 m

ag
ni

tu
de

Server model update
Benign client model updates
Malicious client model updates

Figure 2: ℓ2 norm of server model updates and client model updates with various attacks on MNIST-
0.5.

D COMPLETE WORKFLOW OF FEDER

The complete workflow of FedER is summarized in Algorithm 2, where ModelTraining(·) is a local
training algorithm specified in Algorithm 1, and ModelValidation(·) is the algorithm to evaluate
the model accuracy on a given dataset. Specifically, in Algorithm 1, ModelTraining(·) performs

10

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Algorithm 1 ModelTraining (W, D, T , β, b, p)

Input: Current model W, a training dataset D, number of iterations T , learning rate β, batch size
b, and pruning fraction p.
Output: A pruned model update G⊙m and the corresponding pruning mask m.

1: W0 = W
2: for t = 1, 2, · · · , T do
3: Randomly sample a batch Db with b samples from D
4: W = W − β · ∇f (W, Db) ▷ f is the loss function
5: end for
6: G = W0 −W
7: Compute a pruning mask m for G with pruning fraction p
8: Return G⊙m and m;

stochastic gradient descent on randomly sampled batch with learning rate β for T iterations and
returns a pruned model update with the corresponding pruning mask.

In Algorithm 2, the server first randomly initializes the global model. Then, the server and the
clients update the global model iteratively in multiple rounds, each of which consists of three phases.
Particularly, in Phase I, the server first calculates a pruning fraction p for local update pruning in
current round. Then, the server sends the global model to the clients in the first round, or the
global update in the others. In Phase II, the server and the clients calculate their model updates
using the root training dataset and the clients’ local training datasets, respectively. It is worth noting
that, if the clients receive a global update from the server, they need to update their client models
before calculating updates. In Phase III, unique ReLU-clipped cosine similarity and a normalized
client model update are calculated based on mutual masking and occasional normalization for each
selected client. Finally, the server computes the global update according to the aforementioned
factors and then updates the global model.

As for the security analysis, it has been well proved that, with ReLU-clipped cosine similarity and
normalization, the distance between the optimal model and global model is strictly constrained Cao
et al. (2021a). In our FedER, we further restrict the updating area and loose the normalization
magnitude, which could be considered as a trade-off between security and performance. However,
the pruning process is dynamically related to the pruning fraction p and maximum bound Γ, which
makes it impracticable to quantitatively analyze the distance between the global model and the
optimal model. Fortunately, experimental results greatly support our idea.

E EXPERIMENTAL SETTINGS

Table 2: Some default FL system parameter settings.

Symbol Discription Dataset
MNIST-0.1 MNIST-0.5 Fashion-MNIST-0.5 CIFAR-10-0.5∣∣Di

c

∣∣ size of client local dataset 500 600 500
|Dv

r | size of the root validation dataset 100∣∣Dt
r

∣∣ size of the root training dataset 100
N # clients 100
κ # selected clients of each round N
Rg # global training rounds 2500 1500
Ts # server local iterations 1
Tc # client local iterations 1 8
b′/b # backdoor samples / batch size 4 / 32 8 / 64
α · βc the combined learning rate 0.1 0.2
βs the server local learning rate 1.0
η the malicious fraction 0.3
Γ the maximum bound of pruning fraction 0.9

11

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Algorithm 2 FedER

Input: A server with a root training dataset Dt
r and a root validation dataset Dv

r ; N clients with N
local datasets ∪N

i=1D
i
c; number of global training rounds Rg; number of server local iterations Ts;

number of client local iterations Tc; global learning rate α; server local learning rate βs; client local
learning rate βc; number of selected clients κ in each round; batch size b; pruning fraction p and its
maximum bound Γ.
Output: Global model Wg .

1: Randomly initialize Wg

2: for rg = 1, 2, · · · , Rg do
3: Randomly selects κ clients c1, c2, · · · , cκ.
4: // Phase I: Model / Update transfer
5: p = min(ModelValildation(Wg , Dv

r), Γ)
6: if rg == 1 then
7: Server sends Wg to selected clients
8: else
9: Server sends Gg to selected clients

10: end if
11: // Phase II: Model training
12: // Server side training
13: Wg,s = Wg

14: Gs ⊙ms,ms = ModelTraining(Wg,s, Dt
r, Ts, βs, |Dt

r|, p)
15: // Client side training
16: for i = c1, c2, · · · , cκ do in parallel
17: if rg == 1 then
18: Wg,i = Wg

19: else
20: Wg,i =Wg,i − α ·Gg

21: end if
22: Gi ⊙mi

c,m
i
c = ModelTraining(Wg,i, Di

c, Tc, βc, b, p)
23: end for
24: // Phase III: Global update aggregation
25: for i = c1, c2, · · · , cκ do
26: mi

m = mi
c ⊙ms

27: Ci
m =

⟨Gs⊙mi
m,Gi

c⊙mi
m⟩

∥Gs⊙mi
m∥·∥Gi

c⊙mi
m∥

28: Obtain n based on Eq. 3
29: Gi

c ⊙mi
m = n ·Gi

c ⊙mi
m

30: end for
31: Gg =

∑N
i=1

ReLU(Ci
m)∑N

j=1 ReLU(Cj
m)

·Gi
c ⊙mi

m

32: Wg = Wg − α ·Gg

33: end for
34: Return Wg

E.1 DATASETS

We conduct our experiments on multiple real-world datasets, including one IID dataset and three
Non-IID datasets, to evaluate the performance of our FedER. Following Cao et al. (2021a), we
take an imbalance degree λ ∈ [0, 1] to characterize the distribution of training samples among all
clients. It is worth mentioning that, in our experiments, we consider the label distribution skew
Kairouz et al. (2019). Assuming there are ρ clusters for a dataset with φ data samples evenly from
ρ categories. For cluster ω ∈ {0, 1, · · · , ρ− 1}, φ·λ

ρ samples from category ω and φ·(1−λ)
ρ samples

uniformly from other categories are distributed to this cluster. Besides, the number of data samples
in each cluster is the same, as well as the number of clients in each cluster. Then, data samples are
distributed to clients randomly, and a data sample only belongs to one client. In other words, each
cluster contains N

ρ clients, where each client possesses φ
N data samples. Apparently, a larger value

12

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

of
∣∣∣λ− 1

ρ

∣∣∣ indicates a larger degree of label distribution skew, and when λ equals to 1
ρ , the label

distribution is IID. Specifically, we consider datasets as follows:

MNIST-0.1: MNIST LeCun et al. (1998) contains 60,000 training and 10,000 testing 28 × 28
grayscale images with respect to 10-class handwritten digits, while the number of training samples
for each category is not equal. Therefore, we randomly select 50,000 training samples from the
original 60,000 training samples, where each category contains 5,000 samples, and distribute the
selected samples to 10 clusters according to the value of λ. For MNIST-0.1, we take λ = 0.1 to
simulate IID training data distribution among clients.

MNIST-0.5: For MNIST-0.5, λ is set to be 0.5, which indicates training data samples are unevenly
distributed among clients.

Fashion-MNIST-0.5: Fashion-MNIST Xiao et al. (2017) comprises 60,000 training and 10,000
testing 28 × 28 grayscale images with respect to fashion products from 10 categories. For Fashion-
MNIST-0.5, training data samples are allocated to clients with λ = 0.5, which is a kind of Non-IID
setting.

CIFAR-10-0.5: CIFAR-10 Krizhevsky et al. (2009) contains 60,000 RGB images (50,000 for train-
ing, 10,000 for testing) that are classified into 10 distinct categories. For CIFAR-10-0.5, a Non-IID
training data distribution among clients is considered, where we take λ = 0.5.

E.2 EVALUATED ATTACKS

In our experiments, we consider two kinds of attacks that reduce the global model accuracy (DoS
attacks) and inject backdoor triggers into the global model (backdoor attacks). For Dos attacks,
we evaluate the LF attack and Krum attack. For the backdoor attacks, BN attack and our crafted
AVGBN attack are considered. Specifically, we set these attacks as follows:

LF attack: The same LF attack setting in Cao et al. (2021a) is used in our experiments. Given a
dataset with ρ categories, for each data sample, if its original label is ω, we flip its label to ρ−ω−1.

BN attack and AVGBN attack: BN attack and AVGBN attack are both backdoor attacks to FL
model, and BN attack is the same as scaling attack in Cao et al. (2021a) because of the existence of
normalization. Different from Cao et al. (2021a) that augments client local training dataset by one,
like Xie et al. (2019a), we take a small poison ratio of 0.125 (i.e., 4 for batch size 32 and 8 for batch
size 64) because this setting is harder to be detected by the ReLU-based cosine similarity. Following
Cao et al. (2021a), for MNIST-0.1, MNIST-0.5, and Fashion-MNIST-0.5, we use a four-pixel trigger
at the bottom right corner of images and set the attacker-chosen target to be 0. For CIFAR-10-0.5,
we use three red, green, and blue pixels at the bottom right corner of images as the trigger, and set
the target to be “bird”.

Krum attack: Krum attack replaces some client model updates with a constructed malicious update
to deviate global model update. We consider the same settings in Fang et al. (2020) to conduct Krum
attack in our experiments.

E.3 EVALUATION METRICS

Four significant metrics are used to evaluate the performance of the global model of an FL method,
i.e., 1) Test accuracy (or simply accuracy): The proportion of correct predictions made by the global
model with the testing dataset. Unless otherwise mentioned, we treat test accuracy and accuracy as
the same. 2) Critical round: The number of global training rounds when the global model reaches a
certain accuracy (i.e., critical accuracy). For different datasets, the value of critical accuracy should
not be the same. Therefore, based on some empirical estimations, the values of critical accuracy
for MNIST-0.1, MNIST-0.5, Fashion-MNIST-0.5, and CIFAR-10-0.5 are set to be 0.90, 0.90, 0.80,
and 0.70, respectively. 3) Critical volume: The volume of communication sent and received by the
server in the critical round. It also shows the sum of communication volume among clients. 4)
Attack success rate (ASR): The proportion of predictions that are the attacker-chosen target among
all predictions made by the global model with the poisoned testing dataset.

13

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

For all attacks, test accuracy, critical round, and critical volume are used to measure the basic per-
formance of an FL method. Besides, the ASR is dedicated to further evaluating the FL method’s
defense against backdoor attacks. For each FL method, the higher test accuracy and lower ASR
represent the better Byzantine-robustness. Meanwhile, if they are available, the critical round and
critical volume of lower value indicate better communication efficiency.

E.4 FL SYSTEM SETTINGS

For different datasets, we choose different global models to show the generality of our FedER.
Specifically, we choose a CNN model with two convolutional layers and three fully connected layers
for MNIST-0.1, MNIST-0.5, and Fashion-MNIST-0.5. For CIFAR-10, we choose the ResNet20 He
et al. (2016) model.

Table 2 shows some FL system parameters settings that we use. In particular, we distribute 500
samples to each client for all datasets except Fashion-MNIST-0.5, where each client possess 600
samples. Following FLTrust Cao et al. (2021a), by default, we assume the size of two root datasets
is 100. Also, the number of clients N is set to be 100 and κ = N . For evaluated methods, they all use
the parameters Rg , Ts, Tc, b, α, βc, and βs. We set them carefully for different datasets to achieve
high accuracy and fast convergence. For instance, on Fashion-MNIST-0.5, we set Rg = 2500,
Ts = 1, Tc = 1, b = 32, α = 0.2, βc = 1.0, and βs = 1.0. Moreover, for FedER, we assume the
maximum bound of pruning fraction is 0.9. Unless otherwise mentioned, we use the aforementioned
default settings. However, the impacts of some settings will be also discussed in this section.

F PERFORMANCE METRICS ON VARIOUS DATASETS

Please refer to Table 3.

G ABLATION STUDY

G.1 IMPACT OF MAXIMUM BOUND FOR PRUNING FRACTION

Recall that in Section 2, we set a maximum bound Γ for the pruning fraction p, and p is numerically
equal to the global model accuracy on root validation dataset. Due to the small size of root validation
dataset, the global model accuracy on this dataset may be much higher than that on the entire testing
dataset. Intuitively, a higher value of p represents a smaller global updating area. When p reaches
a high value, the global model updating will be very slow or even stop (when p = 1). Therefore,
like Li et al. (2020), we set a maximum bound Γ for p and compare the impacts of different bounds.
As shown in Table 4, we vary the Γ ∈ {0.8, 0.9, 0.95, 0.99} on MNIST-0.5 considering different
attacking scenarios. We observe that, without attacks, Γ = 0.8 receives the highest accuracy and
Γ = 0.9 reaches the lowest critical volume. For considered attacks, all settings remain robust against
them, while Γ = 0.9 shows the best communication efficiency. Meanwhile, within a reasonable
range (e.g., (0.8, 0.90)), different values for Γ have limited impact. Nevertheless, when Γ is set to
be an extreme value (e.g., 0.99), the accuracy reduces.

G.2 IMPACT OF MASKING METHOD

Recall that in Section 2, we use the element-wise product to generate a mutual mask instead of
using the element-wise addition to generate an additive mask. With mutual masking, the global
update only keeps the dimensions that are kept in the pruned server model update. However, with
additive masking, some dimensions pruned in the pruned server model update but kept in pruned
client model updates are used to compute the global update, which makes some neurons that should
remain low values to be updated. Because the positive or negative of the cosine similarity depends
only on the mutual masked part, we call the updates outside the mutual mask part (mi

a − mi
m)

out-of-control updates. As shown in Fig. 3, these out-of-control updates may allow adversaries to
successfully carry out backdoor attacks. For two considered backdoor attacks, though the additive
masking method receives low ASRs when 10% to 70% of clients are malicious, it can be backdoored
when major (around 80%) clients are conducting attacks. By contrast, the mutual masking method
remains robust against these backdoor attacks even though with 90% malicious clients. We omit

14

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Table 3: Performance metrics on various datasets
(MNIST-0.1, MNIST-0.5, and CIFAR-10-0.5).

(a) MNIST-0.1

Attack Defense Critical Round Critical Volume
(MB) / Percent Accuracy ASR

No
FLTrust 520 244.81 / 100.00% 0.96

FedER with
fixed p = 0.9

410 25.33 / 10.35% 0.95

FedER 320 81.22 / 33.18% 0.95

LF
FLTrust 550 258.93 / 100.00% 0.96

FedER with
fixed p = 0.9

470 29.04 / 11.22% 0.95

FedER 430 91.31 / 35.26% 0.95

BN
FLTrust 550 258.93 / 100.00% 0.96 0.06

FedER with
fixed p = 0.9

420 25.95 / 10.02% 0.95 0.00

FedER 370 92.75 / 35.82% 0.95 0.00

AVGBN
FLTrust 500 235.39 / 100.00% 0.96 0.00

FedER with
fixed p = 0.9

440 27.19 / 11.55% 0.95 0.00

FedER 370 93.71 / 39.81% 0.95 0.00

Krum
FLTrust 600 282.47 / 100.00% 0.93

FedER with
fixed p = 0.9

460 28.42 / 10.06% 0.94

FedER 380 87.00 / 30.80% 0.94
(b) MNIST-0.5

Attack Defense Critical Round Critical Volume
/ (MB) Percent Accuracy ASR

No
FLTrust 1080 580.44 / 100.00% 0.96

FedER with
fixed p = 0.9

470 29.04 / 5.00% 0.95

FedER 430 94.06 / 16.20% 0.95

LF
FLTrust 1120 527.27 / 100.00% 0.96

FedER with
fixed p = 0.9

540 33.37 / 6.33% 0.95

FedER 480 100.76 / 19.11% 0.95

BN
FLTrust 1110 522.57 / 100.00% 0.95 0.00

FedER with
fixed p = 0.9

540 33.37 / 6.39% 0.95 0.00

FedER 430 102.40 / 19.60% 0.95 0.00

AVGBN
FLTrust 730 343.67 / 100.00% 0.95 0.03

FedER with
fixed p = 0.9

620 38.31 / 11.15% 0.95 0.00

FedER 470 130.77 / 38.05% 0.95 0.00

Krum
FLTrust 1090 513.15 / 100.00% 0.95

FedER with
fixed p = 0.9

690 42.63 / 8.31% 0.93

FedER 400 88.29 / 17.21% 0.94

(c) CIFAR-10-0.5

Attack Defense Critical Round Critical Volume
/ (MB) Percent Accuracy ASR

No
FLTrust 650 1359.11 / 100.00% 0.78

FedER with
fixed p = 0.9

N/A N/A 0.64

FedER 340 358.15 / 26.35% 0.78

LF
FLTrust 690 1442.74 / 100.00% 0.76

FedER with
fixed p = 0.9

N/A N/A 0.64

FedER 390 382.20 / 26.50% 0.76

BN
FLTrust 740 1547.29 / 100.00% 0.78 0.04

FedER with
fixed p = 0.9

N/A N/A 0.63 0.06

FedER 310 333.33 / 21.54% 0.78 0.02

AVGBN
FLTrust 660 1380.02 / 100.00% 0.76 0.04

FedER with
fixed p = 0.9

N/A N/A 0.61 0.10

FedER 750 768.27 / 55.67% 0.75 0.04

Krum
FLTrust N/A N/A 0.69

FedER with
fixed p = 0.9

N/A N/A 0.63

FedER 830 734.47 / N/A 0.71

15

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Table 4: Impact of maximum bound of pruning fraction on some performance metrics on MNIST-
0.5.

Attack Γ Critical Round Critical
Volume (MB) Accuracy ASR

No

0.8 390 95.82 0.96
0.9 430 94.06 0.95

0.95 430 94.20 0.94
0.99 470 96.58 0.93

LF

0.8 420 101.63 0.95
0.9 480 100.76 0.95

0.95 530 103.60 0.94
0.99 490 101.38 0.93

BN

0.8 400 104.96 0.95 0.00
0.9 430 102.40 0.95 0.00

0.95 470 105.37 0.94 0.00
0.99 480 105.97 0.94 0.01

AVGBN

0.8 470 137.05 0.95 0.00
0.9 470 130.77 0.95 0.00

0.95 470 132.55 0.94 0.01
0.99 460 131.68 0.93 0.01

Krum

0.8 380 91.51 0.95
0.9 400 88.29 0.94

0.95 400 88.97 0.93
0.99 480 93.59 0.93

(a) BN attack

10 20 30 40 50 60 70 80 90
Malicious fraction

0

20

40

60

80

100

At
ta

ck
 s

uc
ce

ss
 ra

te

Mutual masking
Additive masking

(b) AVGBN attack

10 20 30 40 50 60 70 80 90
Malicious fraction

0

20

40

60

80

100

At
ta

ck
 s

uc
ce

ss
 ra

te

Mutual masking
Additive masking

Figure 3: Impact of masking method on attack success rate on MNIST-0.5. The accuracy of all
masking methods are similar under backdoor attacks, which we omit for simplicity.

(a) LF attack

10 20 30 40 50 60 70 80 90
Malicious fraction

0

20

40

60

80

100

Ac
cu

ra
cy

FLTrust w/0 attacks
FedER w/0 attacks
FLTrust
FedER

(b) BN attack

10 20 30 40 50 60 70 80 90
Malicious fraction

0

20

40

60

80

100

At
ta

ck
 s

uc
ce

ss
 ra

te

FLTrust w/0 attacks
FedER w/0 attacks
FLTrust
FedER

(c) AVGBN attack

10 20 30 40 50 60 70 80 90
Malicious fraction

0

20

40

60

80

100

At
ta

ck
 s

uc
ce

ss
 ra

te

FLTrust w/0 attacks
FedER w/0 attacks
FLTrust
FedER

(d) Krum attack

10 20 30 40 50 60 70 80 90
Malicious fraction

0

20

40

60

80

100

Ac
cu

ra
cy

FLTrust w/0 attacks
FedER w/0 attacks
FLTrust
FedER

Figure 4: Impact of malicious fraction on the test accuracy and attack success rate of different FL
methods on MNIST-0.5. The accuracy of all methods are similar under backdoor attacks, which we
omit for simplicity.

DoS attacks because two masking methods have similar performance under LF and Krum attacks.
Hence, we employ the mutual masking for FedER.

G.3 IMPACT OF OCCASIONAL NORMALIZATION

Recall that in Section 2, we take an occasional value n = max (n1,n2,n3) to normalize the mag-
nitudes of client model updates. In Table 5, we compare the performance of different normalization

16

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Table 5: Impact on occasional normalization on some performance metrics on MNIST-0.5.

Attack n
Critical
Round

Critical
Volume (MB) Accuracy ASR

No

n1 1400 413.44 0.90
n2 N/A N/A 0.86
n3 530 100.88 0.95

max (n1,n2) 1430 414.91 0.92
max (n1,n3) 420 93.02 0.95
max (n2,n3) 500 98.89 0.95
max (n1,n2,

n3)
430 94.06 0.95

LF

n1 N/A N/A 0.90
n2 N/A N/A 0.82
n3 480 101.47 0.95

max (n1,n2) 1610 440.14 0.91
max (n1,n3) 530 103.86 0.95
max (n2,n3) 490 101.74 0.95
max (n1,n2,

n3)
480 100.76 0.95

BN

n1 1690 454.89 0.90 0.01
n2 N/A N/A 0.83 0.01
n3 490 107.11 0.95 0.00

max (n1,n2) 1430 436.82 0.91 0.01
max (n1,n3) 460 104.66 0.95 0.01
max (n2,n3) 500 108.03 0.95 0.01
max (n1,n2,

n3)
430 102.40 0.95 0.00

AVGBN

n1 1430 325.37 0.90 0.01
n2 2400 547.78 0.89 0.01
n3 520 136.30 0.95 0.01

max (n1,n2) 1040 300.60 0.92 0.01
max (n1,n3) 490 132.61 0.95 0.00
max (n2,n3) 510 135.60 0.95 0.00
max (n1,n2,

n3)
470 130.77 0.95 0.00

Krum

n1 N/A N/A 0.90
n2 N/A N/A 0.83
n3 2000 364.52 0.93

max (n1,n2) 2250 454.26 0.90
max (n1,n3) 430 90.58 0.94
max (n2,n3) 480 99.33 0.94
max (n1,n2,

n3)
400 88.29 0.94

methods with malicious fraction of 0.3 on MNIST-0.5. Specifically, we consider seven settings
for n, which are respectively n1 (the normalization in Cao et al. (2021a)), n2, n3, max (n1,n2),
max (n1,n3), max (n2,n3), and max (n1,n2,n3) (the normalization in our FedER). For the no
attack setting, four settings achieve the highest accuracy while max (n1,n3) and max (n1,n2,n3)
are more efficient than the others. For four attacks, the setting in our FedER (max (n1,n2,n3)) pro-
duces the least amount of communication to reach the critical accuracy, meanwhile, it could achieve
the highest accuracy among all potential settings. Therefore, we take n = max (n1,n2,n3) in our
FedER.

G.4 IMPACT OF MALICIOUS FRACTION

When conducting attacks, the fraction of clients that an adversary could control matters. As shown
in Fig. 4, we compare FedER with FLTrust under considered attacks. For DoS attacks (LF and
Krum attacks), FLTrust and our FedER achieve the similar defense result with negligible reduction
in accuracy compared with no attack scenario. However, for backdoor attacks, FedER performs
better than FLTrust when malicious fraction comes to 70%. For instance, under AVGBN attack,

17

Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

the ASR for FLTrust is 0.84, while that for FedER is 0.00. When malicious fraction further grows
to 90%, FedER still remains an ASR that is almost equal to zero, showing higher robustness than
FLTrust.

18

	Introduction
	The Proposed FedER
	Evaluation
	Experimental Setups
	Experimental Results
	Comparison with State-of-the-Art study
	Ablation Study

	Conclusion
	Background and Related Work
	Federated Learning
	Poisoning Attacks to Federated Learning
	Model Pruning & Update Pruning

	Threat Model
	Attack Model
	Defense Model

	The 2 norm of the server model update and client model updates for each training round
	Complete Workflow of FedER
	Experimental Settings
	Datasets
	Evaluated Attacks
	Evaluation Metrics
	FL System Settings

	Performance metrics on various datasets
	Ablation Study
	Impact of maximum bound for pruning fraction
	Impact of Masking Method
	Impact of Occasional Normalization
	Impact of Malicious Fraction

