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Abstract—Increasing demand for personal privacy facilitates
the growing interest in Federated Learning (FL). Nevertheless,
the application of FL still suffers from the threat of Byzantine
attacks which are incredibly challenging to withstand. In
this paper, we propose a novel Byzantine-robust FL scheme
called FLPhish. First, we develop a new FL architecture
named Ensemble Federated Learning (called Ensemble FL)
through making use of the unlabeled dataset in the FL server.
Second, we design FLPhish, a Byzantine-robust scheme based
on Ensemble FL to confront with Byzantine attacks. A phishing
mechanism is crafted in our FL system to preserve security.
Further, a Bayes’s Theorem-based reputation mechanism is
proposed to enhance the performance of our FLPhish. We
evaluate FLPhish under different fractions of Byzantine clients
and different distribution imbalance degrees q. Extensive ex-
periments under different conditions demonstrate the high
effectiveness of the proposed FLPhish in resisting Byzantine
attacks in Ensemble FL.

Index Terms—Federated Learning, Ensemble Learning, Rep-
utation, Phishing

I. INTRODUCTION

RECENT years have seen explosive social concerns
about personal privacy, which motivates the advance of

privacy-preserving technologies such as Federated Learning
(called FL). FL is a privacy-preserving machine learning
technology that enables central server to train a global model
without accessing users’ data. In FL, the central server only
needs to train its global model using users’ gradient updates
instead of users’ private data. Thus, FL can protect users’
privacy. Google built the world’s first product-level scalable
mobile FL system based on TensorFlow1. Its FL system
could be operated on thousands of mobile phones. Moreover,
a team of WeBank developed an FL framework called FATE2

for credit risk prediction.
The application of FL also leads the vulnerability to

adversarial manipulations. Clients may be manipulated or
poisoned by malicious attackers (called Byzantine attack-
s). The malicious clients can upload the wrong gradient
updates to the central server or poison the dataset of the
clients. Therefore, they cause the global model preserved
by the central server invalid. By the results of the attacks,
Byzantine attacks can be categorized into targeted attacks
and untargeted attacks. In untargeted attacks [1]–[3], the
disturbed global model produces incorrect predictions for

1https://federated.withgoogle.com/
2https://github.com/FederatedAI/FATE

the test dataset randomly. While in targeted attacks [4], the
global model produces labels for the testing dataset in a
definite pattern selected by attackers.

Some Byzantine-robust methods have been proposed by
former researchers to address the malicious Byzantine clients
in the application scenarios of FL [5]–[9]. The Byzantine-
robust methods aim to formulate a global model with high
accuracy in the presence of a bounded number of malicious
clients. We can categorize the Byzantine-robust methods into
two major types according to their different mechanisms.
The core of the first one (called Byzantine-Detection) is
to set up a Byzantine-robust aggregation rule which can
distinguish the suspected clients from benign clients. Then
server excludes the suspected clients’ gradient updates be-
fore applying them for the aggregation. For instance, in
DRACO [6], each node evaluates redundant gradients that
are used by the parameter server to eliminate the effects
of adversarial updates. While the key idea of the another
category of Byzantine-robust methods (called Byzantine-
Tolerance) is to ensure the aggregation process tolerant
against Byzantine clients’ poisoned updates without casting
aside the Byzantine clients such as Median [8]. The FL
server using Median sorts the values of each parameter and
picks out the median value of each parameter as the value
involving in the updating of global models. However, recent
studies [2] implies that existing Byzantine-robust methods
are still vulnerable to Byzantine attacks. Our contributions
are three-fold:

• First, we design a new FL architecture, Ensemble
Federated Learning (called Ensemble FL). Ensemble
FL utilizes an unlabeled dataset to replace the gradient
updates in traditional FL. This framework supports
using different types of deep learning models in each
client and makes FL more flexible.

• Second, we craft a robust Byzantine scheme called
FLPhish based on our proposed ‘phishing’ method.
FLPhish employs the labeled dataset to detect the
potential Byzantine clients in the Ensemble FL system.
It can preserve the security of Ensemble FL.

• Third, we propose a reputation mechanism to promote
FLPhish’s aggregation. Each client is given a reputation
to measure the confidence value of it. A client with a
low reputation is identified as a Byzantine client and
discarded from the aggregation process.



II. MODELS AND DESIGN GOALS

In this section, we discuss the system model, threat model
and identify our design goal.

A. System Model

We first discuss the design of traditional FL.
1) FL Server: FL server sends a global model to each

client at each round. After receiving the gradient updates of
all the clients, the FL server utilizes the gradient updates
to aggregate a global update. The aggregation process is ac-
complished based on FedAvg. After the aggregation process,
the FL server updates the global model via adding the global
updates to the global model.

2) FL Client: Each client uses their local dataset to train
the model sent from the FL server. Then it dispatches the
gradient updates of the model back to the FL server.

B. Threat Model

However, the current system still suffers from multiple
problems, especially Byzantine attacks. Malicious users can
initiate untargeted Byzantine attacks towards global model
via the label flipping attack in the current system model.
Label-flipping requires adversaries to modify the labels of
training data and ensure the features of data unchanging.
Thus, malicious users can dispatch the false updates of the
gradient to the central server. Therefore the false updates
of the gradient can cause the central server to learn false
distilled knowledge from clients. If the weight of the mali-
cious clients reaches a threshold, the central server can be
misguided to produce false predictions.

C. Design Goals

The key objective of the proposed FLPhish scheme is to
provide a robust approach to accurately resist opportunistic
untargeted attacks in our Ensemble FL system. Our design
goals are as follows:

1) Inspired by the idea of ensemble learning, we build a
new FL architecture called Ensemble FL. It can reduce the
network transfer cost and provide more opportunities for us
to counter Byzantine attacks in FL.

2) Our proposed Ensemble FL architecture lacks protec-
tion against Byzantine attacks. Since the clients in FL can
not be fully trusted, we urgently require an efficient way
to tackle malicious Byzantine clients. Thus, we present a
phishing-based model to guard against Byzantine attacks in
our proposed Ensemble FL system.

3) To accurately assess clients’ behaviors, we further pro-
pose an effective Bayesian-based reputation scheme based
on our phishing-based model to spot Byzantine attacks
compromised by malicious users.

III. OUR FRAMEWORK

In this section, we introduce the phishing method and
reputation mechanism proposed in detail.

A. Ensemble Federated Learning
Inspired by the idea of ensemble learning, we propose a

new FL architecture, Ensemble FL.
Unlike existing FL architecture, which adopts gradient

updates for global model updates, we apply an unlabeled
dataset preserved by a central server and clients’ predictions
of it for global aggregation.

1) Client: Each client ci (i indicates the number of the
client) undertakes the task of collecting their local data, and
labeling its local data. ci collects data from the personal
computer, smartphone, and smart cars, etc. The collected
data will be labeled and preprocessed by ci. After that, ci
adopts the preprocessed local dataset to train its local model.
When receiving a public dataset, ci utilizes its local model
to make predictions for the public dataset and return the
predictions to the central server s.

2) Central server: Central server s is responsible for
making a public dataset and building a global model. The
public dataset consists of a variety of data that is unlabeled.
The dataset can be collected by s or produced by it (such
as using GAN to generate data). After the construction of
the public dataset, s sends the public dataset to the clients.
Each client ci sends its predictions about the public dataset
back to s. After receiving all the predictions, s aggregates
the predictions. Then s employs the aggregated results and
the public dataset to train the global model.

This system model demonstrates a variety of advantages
over traditional FL architecture:
• The selection of the global model and each client’s

local model is restricted to the same type of neural
architecture in traditional FL. Nevertheless, in our sys-
tem, deploying different types of neural architectures
is allowed for us to apply the distilled knowledge
(the predictions of the unlabeled data produced by the
clients). Different selected features in different clients
can be permitted as well.

• The overheads and latency of the communication pro-
cess can be significantly reduced compared to the
traditional FL architecture. Transferring data can be
much faster than transferring gradient updates.

B. Phishing Mechanism
The proposed Ensemble FL still confronts with the threat

of Byzantine attacks as shown in Fig. 1. Malicious clients
can manipulate their local model via label flipping. They
can mislabel the local dataset to build a ‘poisoned’ local
model. When malicious clients receive unlabeled data from
the central server, they manufacture false predictions (called
poisoned knowledge) and send these false predictions to the
central server. Subsequently, the central server aggregates the
false predictions as the labels of the unlabeled dataset. Then
central server trains the global model using these unlabeled
datasets with the false aggregation predictions. Therefore, a
flawed global model is manufactured. Inspired by the idea
of ensemble learning, we consider utilizing the labeled data
in the architecture of Ensemble FL to cope with Byzantine
attacks. We called labeled data ‘bait’.



Algorithm 1 Ensemble FL
Input: the ensemble of clients C with local dataset di,
i = 1, 2, 3, ..., u; a central server s with unlabeled dataset
D; number of training iterations T ; unlabeled batch size n;
Output:
1: mi ← each client ci train a local model using its own

local dataset di;
2: for t=1,2,3,..,,T do
3: s selects Dt (containing n samples) from D;
4: for i=1,2,3,...,u do
5: s sends Dt to ci;
6: ci makes predictions kti of the Dt;
7: ci sends kti to s;
8: end for
9: Yt = KnowledgeEnsemble(kt1, k

t
2, k

t
3, ..., k

t
u);

10: M = ModelUpdate(Yt, Dt,M);
11: end for
12: return M .

Algorithm 2 KnowledgeEnsemble
Input: the ensemble of kti{i=1,2,3,...,u}; size of each client’s

local dataset ei{i=1,2,3,...,u}; the unlabeled dataset Dt used
in tth procedure; ŷt is the ensembled prediction of dataset
Dt; ŷti denotes the prediction of the dataset Dt made by ith
client;
Output:
1: for l = 1, 2, 3, ..., n (l = 1, 2, 3, ..., n, denotes the data

point in the unlabeled dataset) do
2: k̂t ←

∑u
i=1

ei∑u
i=1 ei

k̂ti ;

3: ŷt ← argmax(k̂t);
4: end for
5: return ŷt.

1) Local Model Training: Each client ci uses its own
local dataset di to train a local model mi as

mi = Train(di). (1)

2) Data Transfer: Central server s selects n samples of
data Dt from unlabeled dataset D and m samples of data
Bt from labeled dataset B. Then s sends Dt and Bt to each
client ci.

3) Predictions: Each client ci predicts the labels of the
unlabeled data Dt and the labeled data Bt:

kti = Predict(Dt, Bt,mi) (2)

(ci can not distinguish between Dt and Bt). via the local
model trained by itself in Step 1 and sends its prediction
back to the central server as the distilled knowledge kti :

kti =

∣∣∣∣∣∣∣
p1,1 p1,2 · · · p1,g−1 p1,g

...
...

. . .
...

...
pn,1 pn,2 · · · pn,g−1 pn,g

∣∣∣∣∣∣∣ . (3)

Unlike benign clients, malicious clients return the false
prediction as the distilled knowledge to central server s.

Fig. 1. Byzantine attacks in Ensemble FL.

4) Byzantine Identification: Accepting the distilled
knowledge from each client ci, s extracts the predictions
of the ’bait’ from kti , and calculates the accuracy of the
predictions via the true label of the ’bait’:

ati = AccuracyCal(kti , Bt). (4)

Then s identifies those clients who hold a low value of
accuracy and distinguishes as malicious clients.

5) Global Model Update: After identifying the malicious
clients within all clients, s aggregate the knowledge k̂t from
all clients as

k̂t =

u∑
i=1

ei∑u
i=1 ei

k̂ti . (5)

Then the server s use the aggregated knowledge k̂t to get
the labels

ŷt ← argmax(k̂t). (6)

C. Reputation Mechanism: Bayesian Inference

Server s maintains a reputation list which records the
reputation of all the clients C in the model. Let Xi be the
reputation of the ci client which represents s’s belief that
how likely client ci is a Byzantine client. The computation
of Xi is based on the accuracy ati of client ci from the 1st
round to the tth round. Every time a new update of client ci
comes to server s, s uses the accuracy ati to update the Xi.

Initially, the reputation is neutral. Each client ci is con-
sidered a benign client by server s with a probability of
50%. When a new update kti comes to the server s, the
reputation is updated by the s. When the reputation is lower
than the threshold r, s considers the client ci as a Byzantine
client officially and discards the update coming from the
client ci. The updates of the client ci are reconsidered in the
aggregation when the Xi exceeds the threshold r.

We employ Bayesian inference to construct our reputation
mechanism. For each data prediction made by client ci, there
are two situations: wrong predictions or correct predictions.
Thus, the use of binomial parameter distributions becomes
a natural choice for our reputation mechanism. Let Yi be
the event that the number of wrong predictions and correct



Fig. 2. Phishing Method & Reputation Mechanism.

predictions made by client ci is αi and βi. Given Xi = γi,
then the conditional probability is

Pr(Yi|Xi = γi) =

(
αi + βi
αi

)
γi
αi (1− γi)βi . (7)

αi and βi is the available evidence for the estimation of
the X . γi is unknown. Equation 7 indicates the likelihood
function for X . According to Bayes’ theory, we can compute
the posterior probability as

Pr(Xi = γi|Yi) =
Pr (Yi|Xi = γi)Pr(Xi = γi)∫ 1

0
Pr (Yi|Xi = x)Pr(Xi = x)dx

.

(8)
As the posterior probability function is given by our analysis,
the final value for the expectation value of reputation X can
be computed as

E(X) =

∫ 1

0

Pr (Yi|Xi = γi)Pr(Xi = γi)∫ 1

0
Pr (Yi|Xi = x)Pr(Xi = x)dx

γidγi.

(9)
Furthermore, we decide to use the binomial parameter beta
distribution to describe the distribution of X. Assume X is a
random variable of the beta distribution with the parameters
(α, β). Therefore the density function is

f(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1. (10)

B function is the beta function. Therefore we can compute
the expectation of X as

E(x) =
α

α+ β
. (11)

Therefore server s can easily compute the reputation of the
client ci as E(xi) =

αi

αi+βi
. We can set the initial value of

the reputation to 50% by set the value of α and β to 1.
This indicates that the probability of being benign client
and malicious client are equal for client ci. When a new
round of FL is accomplished, αi′ and βi

′ are provided as
the new evidence for the computation of the reputation.

The parameters are updated as (αi + αi
′, βi + βi

′). Then
the reputation is given by

E(xi)
′
=

αi + αi
′

αi + αi′ + βi + βi
′ . (12)

Then we identify the client ci whose reputation is lower
than the threshold τ as Byzantine clients, and given them a
aggregation weight as

ωi =

{
1 if x ≥ τ
0 if x < τ

. (13)

The aggregated knowledge will be given by

k̂t =

u∑
i=1

ei∑u
i=1 ei

k̂ti × ωi (14)

ŷt ← argmax(k̂t). (15)

IV. PERFORMANCE EVALUATION

In this section, we experimentally evaluate our FLPhish
against the untargeted attacks under different conditions.

A. Experiment Setup

1) The fractions of Byzantine clients: We evaluate our
FLPhish under the circumstances of different fractions of
Byzantine clients: 0.0 (no Byzantine clients), 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

2) The imbalance degree q of the data: According to the
previous research [2], we distribute the data in a dataset
among all the clients. Giving M classes of data in a dataset,
we split the clients into M groups. A client c in group m is
provided with data where data m accounts for over q percent.
Within the same group, data are uniformly distributed among
all the clients. The parameter q controls the distribution
inference of clients’ local training data. If q = 1

M , the
clients’ local training data are independent and identically
distributed. We evaluate our FLPhish on three different q:
0.1 (IID), 0.2, 0.5, 0.6, 0.7, 0.8 and 0.9 (extremely non-IID).

3) The number of the clients: The number of clients is
set to 50 in our experiment.



(a) Experiments on different imbalances degrees (b) Experiments on different fractions of byzatnine clients

Fig. 3. Performance comparison on different fractions of byzatnine clients and different imbalances degrees.

(a) q=0.1 & Byzantine fractions=0.2 (b) q=0.2 & Byzantine fractions=0.2 (c) q=0.5 & Byzantine fractions=0.2 (d) q=0.9 & Byzantine fractions=0.2

(e) q=0.1 & Byzantine fractions=0.5 (f) q=0.2 & Byzantine fractions=0.5 (g) q=0.5 & Byzantine fractions=0.5 (h) q=0.9 & Byzantine fractions=0.5

(i) q=0.1 & Byzantine fractions=0.9 (j) q=0.2 & Byzantine fractions=0.9 (k) q=0.5 & Byzantine fractions=0.9 (l) q=0.9 & Byzantine fractions=0.9

Fig. 4. Performance comparison on MNIST untargeted attack.

4) The local CNN model used by clients: We use
ResNet to perform deep learning tasks in our local client.

5) The dataset: We take MNIST as our experiment
dataset. Each client has 1000 samples. Among the samples,
800 are used as training datasets, while another 200 are
treated as test datasets.

B. Experiment Results

1) Performance Comparison on Different Distributions:
We evaluate our FLPhish under the condition where Byzan-
tine client portion is a fixed value 0.5 and distribution
imbalance value q is different across the Experiments. The
experiment results are shown in Fig. 3. From Fig. 3, we
can observe that the FLPhish outperforms baseline until the



TABLE I
PERFORMANCE COMPARISON ON DIFFERENT FRACTIONS OF BYZANTINE AND FIXED IMBALANCE DEGREE q = 0.2.

Byzantine clients fraction 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Baseline 0.9430 0.9405 0.9410 0.9365 0.4185 0.0240 0.0180 0.0180 0.0150
FLPhish(threshold=0.1) 0.9425 0.9425 0.9430 0.9470 0.9415 0.9380 0.9380 0.9385 0.9160
FLPhish(threshold=0.2) 0.9465 0.9405 0.9410 0.9460 0.9435 0.9355 0.9385 0.9380 0.9370
FLPhish(threshold=0.5) 0.9430 0.9415 0.9440 0.9440 0.9440 0.9355 0.9395 0.9355 0.9395

TABLE II
PERFORMANCE COMPARISON ON DIFFERENT q AND FIXED FRACTIONS OF BYZANTINE.

Imbalance Degree q=0.1 q=0.2 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9

Baseline 0.1660 0.4195 0.6205 0.6005 0.3450 0.5185 0.2315
FLPhish(threshold=0.1) 0.9375 0.9380 0.8555 0.9735 0.9700 0.9625 0.2395
FLPhish(threshold=0.2) 0.9365 0.9460 0.9165 0.9715 0.9685 0.9670 0.4880
FLPhish(threshold=0.5) 0.9405 0.9430 0.9080 0.9745 0.9690 0.9670 0.1035

imbalance degree q reaches 0.9. The imbalance degree q of
0.9 means that the distribution of data becomes extremely
non-IID. The performance of FLPhish with a threshold of
0.5 rapidly falls in this case. When facing the distribution
of imbalance degree q = 0.9, each client performs badly,
bringing a decline to its reputation. Figure. 4demonstrates
that the rise of imbalance degree will bring a explosive
decline to the global model’s accuracy. The accuracy of the
global model under the FLPhish of threshold 0.5 stays 0.1
in the whole learning process. It means that the FLPhish of
threshold 0.5 identifies all the clients as Byzantine clients,
making the aggregation process invalid. We can see that
FLPhish of threshold 0.2 outperforms others. When the
distribution becomes non-IID, the threshold of FLPhish
should be set to a lower value to avoid a high false-negative
rate. In the experiment of MNIST, it should be set to 0.2.

2) Performance Comparison on Different Fractions of
Byzantine Clients: Different fractions of Byzantine clients
are taken into account by us as well. Figure. 3 shows that the
accuracy for Ensemble FL without any defense mechanism
begins to fall rapidly when the Byzantine portion reaches
nearly 50%. In comparison, the performance of FLPhish
under different thresholds keeps good performance when the
portion increases. It means that FLPhish detects Byzantine
clients effectively and discards them from the aggregation
process accurately. With no Byzantine clients involving in
aggregation processes, the global model can be trained
successfully. Besides, we can infer from the results that
FLPhish with threshold of 0.1 performs worse than the other
two. This is because the threshold of 0.1 is a excessively
low value to detect Byzantine clients effectively. Specifically,
there are some Byzantine clients’ reputation can go over 0.1.
It means Byzantine clients can bypass FLPhish’s detection
if the threshold is set to a overly low value.

V. CONCLUSION

In this paper, we develop an FL architecture called
Ensemble Federated Learning. Ensemble FL enable us to

take advantage of unlabeled dataset to transfer knowledge
between the FL server and the FL clients. Specifically,
we propose a FLPhish mechanism to enable Ensemble FL
robust against Byzantine attacks using labeled dataset as
‘bait’ to detect malicious Byzantine clients in Ensemble FL.
Moreover, we present a reputation mechanism to measure
the confidence level of the clients. Furthermore, we evaluate
our proposed FLPhish in different situations. The experi-
ment results demonstrate that FLPhish shows outstanding
performance to confront with Byzantine attacks. Even en-
countering conditions with extremely non-IID distribution
and high fractions of Byzantine clients, FLPhish still shows
much better performance than our Ensemble FL.
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